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We present the theory of bosonic systems with multiple condensates, providing a unified description of
various model systems that are found in the literature. We discuss how degeneracies, interactions, and sym-
metries conspire to give rise to this unusual behavior. We show that as degeneracies multiply, so do the
varieties of fragmentation, eventually leading to strongly correlated states with no trace of condensation.
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I. BOSE-EINSTEIN CONDENSATION, FRAGMENTED
CONDENSATES, AND STRONGLY CORRELATED STATES

Bose-Einstein condensation �BEC� is a very robust phe-
nomenon. Because of Bose statistics, noninteracting bosons
seek out the lowest single-particle energy state and �below a
critical temperature Tc� condense into it, even though many
almost degenerate states may be nearby. At temperature
T=0, the condensate contains all the particles in the system
�1�. Although this remarkable phenomenon was originally
predicted by Einstein for noninteracting systems �2�, it be-
came understood, starting with the work of London �3�, that
it occurs in strongly interacting systems such as 4He. While
interactions remove particles from the condensate into other
states, the energy gained by macroscopically occupying the
lowest energy state �or another state, such as a vortex� is
sufficiently great that the interactions in a Bose-Einstein-
condensed system manage only to deplete a fraction of
the condensate, but not destroy it �4�. This is the case for
liquid 4He �5� as well as dilute gases of bosonic alkali-metal
atoms �6�.

In certain situations, however, a system does not condense
into a single condensate �7–19�. In this paper we explore the
physics of condensation when the ground state can contain
several condensates—situations of fragmented condensation.
This possibility arises naturally from the very concept of
BEC—i.e., that the nondegenerate ground state of a single-
particle Hamiltonian h0 is macroscopically occupied. How,
instead, does condensation take place when the ground state
of h0 is degenerate, with two or more states competing si-
multaneously for condensation? What happens if the ground-
state degeneracy G is not just of order unity, but of order N,
the number of particles? And what happens if G becomes
much greater than N, or even approaches infinity? How do
the bosons distribute themselves in these competing levels?
In all these cases, interaction effects play an important role
in determining the structure of the many-body ground
state. Different types of interactions produce different fluc-
tuations �such as those of phase, number, or spin� and lead to
different classes of ground states.

Exact degeneracy is difficult to achieve, since small ex-
ternal fields or weak tunneling effects are generically
present. Such energy-splitting effects lead to a nondegenerate

ground state and therefore favor the formation of a single
condensate. Only when interaction effects dominate over
energy splittings can a single condensate break up.

Considerations of the effect of ground-state degeneracies
are not merely theoretical exercises. Rather, such degenera-
cies occur in a wide range of current experiments in cold
atoms. The cases where the degeneracy G is of order unity
are related to bosons with internal degrees of freedom. Ex-
amples include a pseudospin-1 /2 Bose gas made up of two
spin states ��F=1,m=−1� and �F=2,m=1�� of 87Rb �20� and
a spin-1 or spin-2 Bose gas such as 23Na or 87Rb in an optical
trap �21�. In the former case, even though the two spin states
of 87Rb are separated by a hyperfine splitting of order GHz,
they can be brought to near degeneracy, with
G=2, by applying an external rf field. In the spin-1 Bose gas,
the three spin states are degenerate at zero external magnetic
field and G=3. The case of G�N1/2 is encountered in one-
dimensional geometries �22�, where the density of states has
a power law singularity at low energies. The case of G�N is
realized for bosons in optical lattices �23� with G sites each
having a few bosons; in the limit of zero tunneling, G
equivalent sites compete for bosons. The case G�N is real-
ized in rotating Bose gases with very large angular momen-
tum L in a transverse harmonic trap �24,25�. As L increases,
the rotation frequency � of the atom cloud approaches the
frequency of the transverse harmonic trap, �T, causing the
single-particle states to organize into Landau orbitals, which
become infinitely degenerate as �→�T. The great diversity
of phenomena in these experiments is a manifestation of the
physics of Bose-Einstein condensation for varying degrees of
degeneracy.

As we shall see, when the degeneracy is low �G�1�, a
single condensate can break up into G condensates. Follow-
ing Nozières and Saint James �8,9�, we refer to such a state
as a fragmented condensate �defined more precisely below�.
We caution, however, that there are many sorts of frag-
mented states. Even degeneracy as small as G=2 can give
rise to fragmented condensates with distinct properties which
depend on whether interaction effects favor phase or number
fluctuations. Systems with larger degeneracies usually have a
larger number of relevant interaction parameters and are
more easily influenced by external fields. As a result, they
have a greater variety of fragmented states. For degeneracies

PHYSICAL REVIEW A 74, 033612 �2006�

1050-2947/2006/74�3�/033612�17� ©2006 The American Physical Society033612-1

http://dx.doi.org/10.1103/PhysRevA.74.033612


G comparable to or much greater than the particle number,
the system does not have enough particles to establish
separate condensates. Instead, interaction effects tend to
distribute bosons among different degenerate single-particle
states in a coherent way, establishing correlations between
them. In such strongly correlated systems, interaction effects
obliterate all traces of a conventional singly condensed state.

We stress at the outset that while interaction effects can
cause fragmentation in the presence of degenerate single-
particle states, the presence of near degeneracies does not
force the condensate to fragment. In many cases the ground
state for a macroscopic Bose system is a conventional single
condensate. Creating a fragmented state typically requires
carefully tuning the parameters of the system, and whether
such a state can occur in practice is very much dependent on
the system. In optical lattices and double-well systems,
where the tunneling between wells can be tuned arbitrarily
finely, a fragmented state can easily be achieved. Yet in other
systems such as a spin-1 Bose gas in a single trap or a rotat-
ing Bose gas, the parameter range allowing the existence of
fragmented states scales like 1/N, making it difficult to
realize these ground states unless the number of particles is
reduced to �103 or fewer.

In this paper, we focus on fragmentation in the ground
state of Bose systems. We consider a number of canonical
examples �double-well systems, spin-1 Bose gases, and ro-
tating Bose gases�, which have increasing degeneracy in the
single-particle Hamiltonian. These examples illustrate the
origin of fragmentation, the variety of fragmented states, and
their key properties. We will not discuss here fragmentation
in optical lattices or in dynamical processes, for they are a
sufficiently large subject to require separate discussions. In
isolation, all of the examples that we discuss have appeared
in the literature and all of their properties have been well
established. By bringing these examples together, however,
we present a global picture of multiply condensed systems.
We show that although there are unifying features shared by
all fragmented condensates, there are also striking differ-
ences. In summary, we see is that in all of these examples
fragmentation is due to an interplay of degeneracies and in-
teractions. In many, but not all, of these examples the frag-
mented state can be understood as a quantum mechanical
average over symmetry broken singly condensed states. As
the degree of degeneracies rises, so too does the complexity
of the fragmented states. The properties of these complicated
states are by no means generic, and one needs to know the
structure of higher-order correlation functions to describe
their behavior. To begin, we first define condensate fragmen-
tation more precisely and then discuss general properties of
certain classes of fragmented states.

II. DEFINITIONS OF CONDENSATION
AND FRAGMENTATION

The concept of Bose-Einstein condensation was general-
ized to interacting systems by Penrose and Onsager �5,26�
in the 1950s by defining condensation in terms of the
single-particle density matrix

��1��r,r�� = ��†�r����r�� , �1�

where �†�r� creates a scalar boson at position r and �¯� is
the thermal average at temperature T. Since ��1� is a Hermit-
ian matrix with indices r and r�, it can be diagonalized as

��1��r,r�� = 	
i

Ni�T�f i�r��*f i�r� , �2�

where the Ni�T� are the eigenvalues and f i�r� the orthonor-
mal eigenfunctions of ��1�; 
f i

*�r�f j�r�d�r�=�ij. Setting r
=r� and integrating over r we have 	iNi�T�=N, where N is
the number of particles. We label the eigenvalues in descend-
ing order—i.e., N0�N1�N2�¯. Equation �2� implies that
if one measures the number of bosons in the single-particle
state f i, one finds Ni. This does not mean that the wave
function of the many-particle interacting system is a product
of such single-particle eigenstates. Unless there are special
reasons �such as strict symmetry constraints—e.g., transla-
tional invariance�, the eigenfunctions �f i� need not be the
same as the single-particle eigenstates �ui� of the single-
particle Hamiltonian of the noninteracting system. Two rel-
evant examples are a homogeneous system of particles in
free space and a system in a harmonic trap. In the former
case, where the momentum k is a good quantum number, we
have i=k and �f i� and �ui� are the same plane-wave momen-
tum eigenstates. In an inhomogeneous trapped system, there
is no simple relation between the �f i� and the �uj� �27�.

The usual situation of Bose-Einstein condensation corre-
sponds to the one eigenvalue N0 being of order N, while
other eigenvalues are of order unity—i.e.,

��1��r,r�� = N0�T�f0�r��*f0�r� + ¯ �3�

��0�*�r����0��r� + ¯ �4�

or, simply,

��1� = N0���0�����0�� + ¯ , �5�

where ��0��r��N0f0�r� and �¯� denotes terms with eigen-
values Ni�O�1�. Since the macroscopic term in Eq. �4� is
identical to the density matrix of the pure single-particle
quantum state, ���0��, the function ��0��r� is often referred to
as the “macroscopic wave function” of the system. Systems
in which ��1� has only one macroscopic eigenvalue, Eq. �4�,
have single condensates. The advantage of the Penrose-
Onsager characterization of BEC, Eq. �4�, is that it applies to
both interacting and noninteracting systems, since it makes
no reference to dynamics. Penrose and Onsager also demon-
strated the remarkable fact that Eq. �4� holds for a Jastrow
function, which is a reasonable approximation to the ground
state of a system of hard-core bosons, therefore substantiat-
ing Eq. �4� as a general property of interacting Bose systems.

The Penrose-Onsager characterization can be easily gen-
eralized to bosons with internal degrees of freedom, labeled
by an index 	. With field operator �	

† �r�, the single-particle
density matrix is

��1��r,	;r�,	�� = �	�
�0�*�r���	

�0��r� + ¯ . �6�
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In a conventional noncondensed system, such as a zero
temperature gas of noninteracting fermions or a high-
temperature gas of bosons, all the occupation numbers
are small: Ni�O�N0�. A conventional singly condensed
system has one large eigenvalue N0�O�N�, with all other
eigenvalues small, Ni
0�O�N0�. A fragmented system has
q
1 large eigenvalues, Ni�q�O�N1�. There is clearly a
range of other possiblilites such as having an extremely large
number q�O�N1/2� eigenvalues, each of which are of size
Ni�q�O�N1/2�. This latter case occurs in an interacting sys-
tem of one dimensional bosons and is associated with a
phase-incoherent quasicondensate �22,28�.

A. Simple example of fragmentation and its relation
to coherent states

Before examining the origin of fragmentation in detail, let
us consider a basic example of fragmentation: the Nozières
model �9�. Consider a system of N bosons each of which has
available two internal states 1 and 2. As we consider in detail
later, this model can also be used to describe atoms in a
double-well potential. The Hamiltonian of Nozières’ model
consists solely of an interaction between atoms in the two
states,

H =
g

2
a1

†a2
†a2a1 =

g

2
n1n2, �7�

where the ai
† create bosons in state i=1,2 and ni=ai

†ai is the
number of particles in i. The interaction between the par-
ticles can be either repulsive �g
0� or attractive �g�0�. The
eigenstates have a definite number of particles in each well
�N1 ,N2�, with N=N1+N2, and energy

E =
g

2
N1N2. �8�

Clearly, for g
0, the ground state is twofold degenerate,
with N1=N, N2=0 or N1=0, N2=N; these states have single
condensates whose density matrices have eigenvalues 0 and
N. On the other hand, for g�0, the state with N1=N2=N /2
has the lowest energy. This Fock state,

�F� =
a1

†N/2a2
†N/2

�N/2�!
�0� �9�

has a fragmented condensate; the corresponding single-
particle density matrix

��1� = �a	
† a�� =

N

2
�1 0

0 1
� �10�

has two macroscopic eigenvalues.
One can contrast this fragmented state to the coherent

state

�N� =
1

�2NN!
�e−i/2a1

† + ei/2a2
†�N�0� �11�

in which N bosons are condensed into the single-particle
state �e−i/2a1

†+ei/2a2
†� /�2. The coherent state is an example

of a single condensate, where the single-particle density
matrix ��1�= �a	

† a�� is

��1� =
N

2
� 1 ei

e−i 1
� �12�

=
N

2
�e−i/2

ei/2 �*

�e−i/2 ei/2� . �13�

The difference between Eqs. �13� and �10� is the absence
of the off-diagonal term �a1

†a2� in the latter, which represents
the loss of phase coherence in state �pseudospin� space.

B. Relation between Fock and coherent states

The Fock state �9� is an average over all coherent phase
states �N�, as we see from the relation

�F� =
2N/2

�N!
�N/2�!�

−�

� d

2�
�N� �14�

���N

2
�1/4�

−�

� d

2�
�N�; �15�

the latter relation holds for N�1. As we discuss in the
next section, this connection is very useful for understanding
the origin of various ground states. An important implication
of this relation is that for a macroscopic system, the
expectation value of any p-body operator,
Op�a	1

† a	2

†
¯a	p

† a�p
¯a�2

a�1
, in the Fock state is indistin-

guishable from that in an ensemble of coherent phase states
��, as long as p�N,

�F�Op�F� = �
−�

� d

2�
�N�Op�N� . �16�

This equation, which we shall prove momentarily, shows
that by measuring quantities associated with few-body opera-
tors, one cannot distinguish a Fock state from an ensemble of
coherent states with random phases �29,30�. An illustration
of this effect is the interference of two condensates initially
well separated from each other. Prior to any measurement
process, the system is in a Fock state, Eq. �9�, since there is
no phase relation between the two condensates. Experimen-
tally, in any single-shot measurement �a photo of the inter-
fering region�, one finds an interference pattern consisting of
parallel fringes whose location is specified by a phase , as
if the two far away condensates actually had a well-defined
relative phase with this value �31�. The value of , however,
varies randomly from shot to shot, so that if one averages
over all the measurements, the interference fringes average
out, as described simply by Eq. �16� �32�.

To prove Eq. �16�, we use Eq. �15� to write

�F�Op�F� =��N

2
�

−�

� d�

2�

d

2�
�N� �Op�N�; �17�

it is then sufficient to show that �N� �Ôp�N� vanishes unless
the phases  and � are very close to each other. We note
that
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�N� �N� = cosN�� − ��/2� � e−N� − ��2/8

� �8�/N�� − �� , �18�

for N�1. For p-body operators of the form

Ôp=a1
†q�a2

†p−q�a2
p−qa1

q,

�N� �Ôp�N� =
N!

2p�N − p�!
ei��p/2−q�−��p/2−q����N−p� �N−p� .

�19�

For N�p, we see from Eq. �18� that �N� �Ôp�N�
=�8� /N�N�Ôp�N���−��+O�1/N�, from which Eq.
�16� follows.

III. CHARACTERISTIC EXAMPLES OF
FRAGMENTATION

We now develop three different examples that illustrate
the origin of fragmentation. These examples are chosen to
illustrate the increasingly complex behavior of fragmentation
when the number of degenerate single-particle states
increases.

A. Scalar bosons in a double well

After the model of Sec. II A, the simplest model with a
fragmented ground state is that of bosons in a double-well
potential with tunneling between the wells. Unlike in the
previous example, this model produces two distinct types of
fragmented states. We label the wells by i=1,2; we assume
that there is only one relevant state in each well and that
particles within a given well have an interaction U, which
can be either repulsive �U
0� or attractive �U�0�. We take
the Hamiltonian to be

H = − t�a1
†a2 + a2

†a1� +
U

2
�n1�n1 − 1� + n2�n2 − 1�� , �20�

where the ai
† creates a boson in well i and ni=ai

†ai is the
number of particles in well i. The first term describes tunnel-
ing between the wells via a tunneling matrix element t
�which we assume to be real and positive�. The form
Uni�ni−1� /2=Uai

†ai
†aiai /2 is the usual contact interaction

�g /2�
�†�†�� reduced to the single mode in each well. For
a fixed number of particles, n1+n2=N, the interaction term
can be written simply as

Û =
U

4
��n1 − n2�2 + N2 − 2N� . �21�

This model, simple as it is, has wide applicability to many
physical situations: atoms in a double-well potential �33�,
internal hyperfine states coupled by electromagnetic fields
�20,21�, atoms in a rotating toroidal trap �34�, or wave
packets in an optical lattice �35�.

In solving this model it is useful to write Eq. �20� in
the Wigner-Schwinger pseudospin representation �36�. We
introduce the operators

Jx = �a1
†a2 + a2

†a1�/2, Jy = �a1
†a2 − a2

†a1�/2i ,

Jz = �a1
†a1 − a2

†a2�/2, �22�

which obey the angular momentum commutation relation
�Ji ,Jj�= i�ijkJk, i=x ,y ,z, and satisfy

J2 = Jx
2 + Jy

2 + Jz
2 =

N

2
�N

2
+ 1� . �23�

The Hamiltonian �20� can be written in terms of J as

H = − 2tJx + U�Jz
2 + J2 − N� . �24�

1. Mean-field solution

As we shall see, the Hamiltonian �20� can be solved ex-
actly. Nonetheless, the mean-field solutions illustrate much
of the physics of the true ground state. They also allow one
to see the kind of fluctuations about the mean-field state that
lead to condensate fragmentation.

The mean-field states are of the form of �pseudo�spinor
condensates

��,� =
1

�N!
�ua1

† + va2
†�N�0� , �25�

where u=e−i/2 cos�� /2� and v=ei/2 sin�� /2�. The matrix
elements of the density matrix in this state are �a1

†a1�= �n1�
=N cos2�� /2�, �a2

†a2�= �n2�=N sin2�� /2�, and �a1
†a2�

=N sin�� /2�cos�� /2�ei. The angles � and  therefore char-
acterize the density and phase difference between the bosons
in the two wells. In pseudospin language, the state �25� de-
scribes a ferromagnet with total spin, �J�= �N /2�n̂, where n̂
= �sin � cos  , sin � sin  , cos �� is the unit vector with polar
angles �� ,�. According to Eq. �24�, its energy is

E��,� = ��,�H��,�

= − tN cos  sin � + U�N2

4
�cos2 � + 1� −

N

2
� .

�26�

For a repulsive interaction, U
0, E�� ,� is minimum
at =0, �=� /2—or n̂= x̂. The mean-field approach
therefore selects the noninteracting ground state
�C�= �a1

†+a2
†�N�0� /�2NN!= �x̂� as optimal. Condensates in the

neighborhood of �C� have energy

E��/2 + �,� = E��/2,0� +
1

2
tN2 +

N

4
�2t + UN��2 + ¯ .

�27�

From this result one can begin to see problems with the
mean-field solution: as t→0 with fixed U, the energy of
phase fluctuations �� vanishes; therefore quantum fluctua-
tions begin to mix in many nearly degenerate phase states,
�� /2 ,�.

The mean-field solution for attractive U is very different
from that of repulsive U. The solution depends on whether
�U�N�2t or �U�N
2t. In the former case, �C� is locally
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stable since the energy of fluctuations, described by Eq. �27�,
remains positive definite. However, the stiffness constant for
density fluctuations ��� is lower than that for phase fluctua-
tions ��. Thus, as �U� increases, density fluctuations become
dominant. Note, however, that the condition �U�N�2t only
occurs for a bounded number of particles and under ordinary
circumstances is not expected to be achievable in macro-
scopic systems. On the other hand, when �U�N
2t, we see
from Eq. �26� that the optimal states satisfy sin �=2t / �U�N.
There are two degenerate solutions: �=�0=arcsin�2t / �U�N�
and �−�0. For �UN� /2t�1, these two states approach
�a1

†N�0� /�N! and �a2
†N�0� /�N!, corresponding to all par-

ticles being in well 1 or 2, respectively.

2. Exact ground states

We now construct the exact ground state of the Hamil-
tonian �20� and see how interactions can cause condensate
fragmentation. At the same time, we can see how different
types of interaction cause different types of fragmented
states.

Noninteracting case. Let us first consider the simplest
case of noninteracting bosons, with Hamiltonian
H=−t�a1

†a2+H.c.�. The single-particle eigenstates are the
symmetric state �a1+a2� /�2 and antisymmetric state
�a1−a2� /�2 with energy −t and t, respectively. For a system
of N bosons, the ground state is

�C� =
1

�2NN!
�a1

† + a2
†�N�0� , �28�

with energy −tN. The single-particle density matrix of this
state is

�a	
† a��C =

N

2
�1 1

1 1
� = N�

1
�2

1
�2
�� 1

�2
,

1
�2

� , �29�

which has a single macroscopic eigenvalue �=N. The
ground state is therefore a single condensate with condensate
wave function �	

T =�N /2�1,1� �the superscript T stands for
transpose�.

Since the ground state �C� is a linear combination of num-
ber states �n1 ,n2�=a1

†n1a2
†n2�0� /�n1!n2!, the number of

particles in each well fluctuates.
We calculate the number fluctuations of the coherent state

�C� by writing it in the number basis. For even N, we have

�C� = 	
�=−N/2

N/2

��
�0���� , �30�

where ���� N
2 +� , N

2 −�� and

��
�0� = � N!

2N�1

2
N + ��!�1

2
N − ��!�

1/2

�
e−�2/N

��N/2�1/4 .

�31�

The number fluctuations are then

��N1
2� = ��N1 − �N1��2� � � d�

�2e−2�2/N

��N/2
= N/4, �32�

which, despite the approximations made in this derivation,
coincides with the exact result.

Interacting case. The many-body physics of this double-
well system is completely tractable. While one can calculate
the properties the ground state numerically to arbitrary accu-
racy, we derive below all the essential features of the ground
state by studying the effect of interactions on the noninter-
acting ground state—i.e., the coherent state �C�. We shall see
that depending on whether the interactions are repulsive or
attractive, the coherent state can be turned into one of two
distinct fragmented states: a Fock-like state, where the num-
ber of particles in each well is fixed; or a Schrödinger-cat-
like state, where the system is in a superposition of having a
macroscopic excess of particles in each of the two wells.

We first look at the Schrödinger equation of this system.
Writing the ground state in the number basis

��� = 	
�=−N/2

N/2

����� , �33�

we can write the Schrödinger equation H���=E���, where
H is given by Eq. �20�, as

E�� = − t�+1��+1 − t���−1 + U�2��, �34�

t� = t��N/2 + ���N/2 − � + 1� . �35�

The many-body problem then reduces to a one-dimensional
tight-binding model in a harmonic potential. The special fea-
ture of this model is that the tunneling matrix element t� is
highly nonuniform �37�: t��N /2 for ��0 and t���N /2 for
�� ±N /2. This nonuniformity is a consequence of bosonic
enhancement, a†�N�=�N+1�N+1� and a�N�=�N�N−1�,
which increases the matrix element by a factor of �N when
removing a particle from a system with N bosons. As a re-
sult, ��+1�a1

†a2��� is maximum when both wells have an
equal number of bosons �i.e., ��0� and drops rapidly when
the difference in boson numbers between the wells begins to
increase �i.e., ��1�. A consequence is that hopping favors
wave functions �� having large amplitudes near �=0. For
example, in the noninteracting case the wave function, Eq.
�31�, is a sharply peaked Gaussian at �=0.

The interaction term U�n1−n2�2 /4 leads to a harmonic
potential in Eq. �34�. Repulsive interactions �U
0� suppress
number fluctuations, meaning that the Gaussian distribution
�Eq. �31�� of the coherent state will be squeezed into an even
narrower distribution. In the limit of zero number fluctuation,

���n1�2� = ���n2�2� = 0, �36�

the system becomes the Fock state

�F� =
a1

†N/2a2
†N/2

�N/2�!
�0� , �37�

which is clearly fragmented, since it is made up of two in-
dependent condensates. This fragmentation shows up in the
single-particle density matrix,
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�a	
† a�� =

N

2
�1 0

0 1
� �38�

=
N

2
�1

0
��1 0� +

N

2
�0

1
��0 1� ,

�39�

which has two macroscopic eigenvalues, corresponding to
independent condensation in each well. The evolution from
the coherent state �C� to the Fock state �F� can be captured
by the family of states

����� =
e−�2/�2

���2/2�1/4 . �40�

As 1/�2 varies from 1/N to much greater than unity, the
initial coherent state �C� becomes more and more Fock like.
Indeed, exact numerical solution of Eq. �34� shows that
Eq. �40� is an accurate description of the evolution from a
coherent state towards a Fock state. During the collapsing
process when the wave function �� still extends over
many number states �but fewer than �N /2�−1/2�, one can take
the continuum limit of Eq. �34�, which reduces to the equa-
tion for a particle in a harmonic oscillator potential. From
its Gaussian ground-state wave function, we extract
�−2= �2/N��1+UN / t�1/2.

Using this continuum approximation, we calculate the
off-diagonal matrix element,

�a1
†a2� = 	

�

��N/2 − ���N/2 + � + 1���+1�� �41�

��N/2�e−1/�2�2�, �42�

which leads to a single-particle density matrix

�a	
† a�� =

N

2
� 1 e−1/2�2

e−1/2�2
1

� . �43�

The eigenvalues are �1= N
2 �1+e−1/�2

� and �2= N
2 �1−e−1/�2

�.
The relative number fluctuations are

���n1�2� = �2/2. �44�

As 1/�2 varies from 1/N to a number much larger than
unity, the eigenvalues ��1 ,�2� vary from �N ,0� to �N /2 ,N /2�
and ����n1�2� varies from �N to 0.

This transition of the coherent state into a Fock state,
described by the family of Eq. �40�, is due to increasing
phase fluctuations, as discussed in Sec. III A 1. The phase
fluctuation effect can be seen by writing Eq. �40� in terms of
phase states,

�� =
1

�2NN!
�ei/2a1

† + e−i/2a2
†�N�0� = 	

�

ei���
�0���� ,

�45�

where ��
�0� are the coefficients given by Eq. �31�. The family

of Eq. �40� then becomes

������ =
���̄2�1/2

��2/N�1/4�
−�

� d

2�
e−�̄22/4�� , �46�

where �̄−2=�−2−N−1. As �−2 varies from �−2�N−1 �coher-
ent state� to �−2�1, the Gaussian in Eq. �46� changes from a
delta function ��� to a uniform distribution, thereby driving
the coherent state towards a Fock state.

Attractive interaction. When U�0, the potential energy
U�n1−n2�2 /4 in Eq. �21� favors a large number difference
between the two wells, in particular the states ��=N /2�
= �N ,0� and ��=−N /2�= �0,N�. It therefore acts in the oppo-
site direction as hopping, which favors a Gaussian distribu-
tion of number states around ��=0�. The effect of the inter-
action is then to split the Gaussian peak of the coherence
state, Eq. �31�, into two peaks, a process which can be
described by the family of states �38�

���a� = C�e−�� − a�2/2��2
+ e−�� + a�2/2��2

� , �47�

where 2a is the separation between the peaks, �� is the width
of the peaks, and C is the normalization constant. As a varies
from 0 toward N /2 and �� shrinks at the same time from
1/�N to 0, the state ���a��=	������ evolves from the
coherent state �C� to a Schrödinger-cat state

�Cat� =
1
�2

��N,0� + �0,N�� . �48�

The Schrödinger-cat state is fragmented in the sense that its
single-particle density matrix has two large eigenvalues

�a	
† a�� =

N

2
�1 0

0 1
� , �49�

identical to that of the Fock state. On the other hand,
contrary to the Fock state, it has a huge number fluctuations,

���n1�2� = ���n2�2� = N2/4. �50�

Details of how a and �� depend on the ratio U / t are found
in �38�, where it is also shown that the family of Eq. �47�
accurately represents the numerical solution of Eq. �34�. This
double-well example brings out the important point that
fragmented condensates cannot be characterized by the
single-particle density matrix alone. Higher-order correlation
functions such as number fluctuations are needed. This ex-
ample also shows how a coherent state can be brought into a
Fock state �or Schrödinger-cat state� through the phase �or
number� fluctuations caused by repulsive �or attractive�
interaction.

B. Spin-1 Bose gas

The spin-1 Bose gas, which is only marginally more com-
plicated, provides an excellent illustration of the role of sym-
metry in condensate fragmentation. Here the degeneracies
that give rise to fragmentation are due to a symmetry: rota-
tional invariance in spin space. We will see that in the pres-
ence of local antiferromagnetic interactions all low-energy
singly condensed states break this symmetry. The true
ground state, which is a quantum superposition of all
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members of this degenerate manifold, is a fragmented con-
densate.

We consider a spin-1 Bose gas with 2N particles in the
single-mode approximation, where each spin state has the
same spatial wave function. Several recent experiments have
been carried out in this limit �39–41� �note that several of
these experiments also explored regimes where the single-
mode approximation was not valid �42��. For conceptual
clarity we consider the extreme case where the trap is so
deep that all particles reside in the lowest harmonic state,
trivially leading to the single-mode limit. In this extreme
situation there are no particle fluctuations: the only relevant
interaction is scattering between different spin states. We de-
note the creation operator of a boson with spin projection
	= �1,0 ,−1� in the lowest harmonic state by a	

† ; the number
of bosons with spin 	 is N	=a	

† a	. The most general form of
the scattering Hamiltonian which is rotational invariant in
spin space is �43�

H = cS2, �51�

where S=		�a	
† S	�a�, with S	�

i the spin-1 matrices �i
=x ,y ,z� and c the interaction constant. We consider the case
c
0. More complicated Hamiltonians, with more interaction
terms, are allowed for atoms with higher spins �44,45�. The
variety of fragmented states proliferates rapidly as the atomic
spin increases.

To illustrate how condensate fragmentation is affected by
external perturbations, we include the linear Zeeman effect,
with Hamiltonian

HZ = − pSz = − p�N1 − N−1� , �52�

where p is the Zeeman energy proportional to the external
magnetic field B. To explain current experiments one also
needs to include the quadratic Zeeman effect: the atomic
energy levels of atoms are not linear in B due to hyperfine
interaction between electron spins and nuclear spins. We ig-
nore these nonlinearities as they are irrelevant for describing
fragmentation.

For later discussion, we also include a term of the form

HG = ��a1
†a−1 + a−1

† a1� , �53�

which mixes spin states 1 and −1, where � is a constant.
Terms of this form can be generated by magnetic field gra-
dients �13�, in which case � is proportional to the square of
the field gradient. Since both H and HZ conserve Sz, the
density matrix �a	

† a�� for the ground state is diagonal in the
presence of these terms alone and the system is generally
fragmented unless the density matrix happens to have only
one macroscopic eigenvalue. The effect of HG is to mix the 1
and −1 states, bringing the system into coherence, similar to
the role of the tunneling term in the double-well system.

1. Mean-field approach

Like the double-well problem in the previous section, the
Hamiltonian in Eq. �51� is exactly soluble. As previously, we
first consider the mean-field solution so that we can relate the
fragmented condensate to a linear combination of singly
condensed states.

The general form of a singly condensed spinor
Bose-Einstein condensate is

���N =
1

�N!�		 �	a	
†�N

�0�, 	
	

��	�2 = 1. �54�

Using the fact that a�a����N=�N�N−1��������N−2, one
readily finds that the number fluctuations are �N�

2�− �N	�2

= �N��=N��	�2. Writing the Hamiltonian as

H = S	� · S��a	
† a�

†a�a� + 2N̂ , �55�

we have, up to terms O�N−1�,

�H + HZ����N
= c�S�2 − p�Sz� + 2cN , �56�

where �S�=N		,��	
* S	���. It is easy to see that Eq. �56� is

minimized by

�
T = ei��e−i�N1

N
,0,ei�N−1

N
� , �57�

where, as before, T stands for transpose,  is the relative
phase between the 1 and −1 components, N1+N−1=N, and
the difference M =N1−N−1= �Sz� is given by the nearest inte-
ger to p /2c. Note that �Sx�= �Sy�=0 and the entire family
��� is degenerate, reflecting the invariance of Eq. �56� under
spin rotation about the z axis. In the absence of a magnetic
field, p→0, we have �

T →ei��e−i ,0 ,ei� /�2. However,
since Eq. �56� becomes fully rotationally invariant at zero
field, any arbitrary rotation of the state �1,0 ,1� /�2 is also an
optimal spinor condensate. The entire degenerate family
�referred to as the “polar” family in literature� is given by

�
�0� = ei��−

1
�2

e−i sin �

cos �

1
�2

ei sin � � , �58�

with energy

�H�polar = 2cN . �59�

Before discussing the exact ground states, we introduce
the “Cartesian” operators

Ax = −
a1 + a−1

�2
, Ay =

a1 − a−1

i�2
, Az = a0. �60�

The important properties of these operators is that that under

a spin rotation a	→U	�a�, where U=exp�−i�� ·S�, A rotates

like a Cartesian vector—i.e., Ai→R����ijAj, where Rij���� is a
rotational matrix in Cartesian space �xyz�. It is easily verified
that �Ai ,Aj

†�=�ij and

S = − iA† � A, N = A† · A , �61�

H = c�N2 − �†��, � = A2. �62�

and the operator that creates a singlet pair is
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�† = A†2 = − 2a1
†a−1

† + a0
†2. �63�

The mean-field state, Eq. �54�, can now be written as

��� � = ��� · A†�N�0�/�N!, �� * · �� = 1, �64�

which has average spin

�S� = − iN�� * � �� . �65�

The optimal mean-field state is determined by minimizing

��� �H��� � = cN2�1 − ��� · �� �2� − ipNẑ · �� * � �� . �66�

In zero field �p=0�, the optimal mean-field state is �� = n̂,
where n̂ is a real unit vector. The polar family mentioned
above can now be conveniently represented by all possible
directions of n̂, and the polar state in Eq. �58� corresponds to

�n̂� =
�n̂ · A†�N

�N!
�0� . �67�

2. Exact ground state in a uniform magnetic field

In the absence of a magnetic field, H=cS2. Since H is
proportional to the angular momentum operator, the ground
state for c
0 �with an even number of bosons, N� is a sin-
glet. The singlet state of a single-mode spin-1 Bose gas is
unique �44�, and hence any manifestly rotationally invariant
state must be the ground state. One can therefore obtain the
ground state by forming singlet pairs, which for an even
number of particles yields �12,13,46�

�S = 0� � �A† · A†�N/2�0� . �68�

Since this state is rotationally invariant, its single-particle
density matrix �a	

† a�� is proportional to the identity matrix
�Shur’s theorem�. With the constraint N=		a	

† a	, we then
have

�a	
† a���S=0� =

N

3
�	�. �69�

The condensate is therefore fragmented into three large
pieces. The energy of the ground state is exactly zero,
whereas that of the mean-field state is 2cN �as shown in Eq.
�59��.

To relate the exact ground to the optimal mean-field state
�the polar family ��n̂���, we note that

�S = 0� �� dn̂

4�
�n̂ · A†�N�0�; �70�

i.e., the exact ground state is an average over the family of
optimal mean-field states. This is the analog of the symmetry
averaging relation in Eq. �16�. This averaging process repre-
sents the quantum fluctuations within the family of degener-
ate mean-field states; the effect of these fluctuations is to
reduce the mean-field energy from 2cN to zero.

Next we consider the case of nonzero magnetic field p
�0. The Hamiltonian is H+HZ=cS2− pSz. The ground state
is �S ,Sz=S� or simply denoted as �S ,S�, where S is an integer
closest to p /2c. The state �S ,S� can be easily obtained by

changing a singlet pair into a triplet pair, and we have

�S,S� = Da1
†S�A†2��N−S�/2�0� , �71�

where D is a normalization constant and Bose statistics re-
quires S to be even if N is even. Since the Hamiltonian H
+HZ conserves Sz, the single-particle density matrix remains
diagonal, �a	

† a��=N	�	�. As shown in �12,13�, the eigenval-
ues N	 have a very interesting behavior as a function of
S—namely,

N1 =
N�S + 1� + S�S + 2�

2S + 3
, �72�

N−1 =
�N − S��S + 1�

2S + 3
, N0 =

N − S

2S + 3
. �73�

If S is of order 1, all three eigenvalues N±1 ,N0, are macro-
scopic. On the other hand, if S becomes macroscopic �i.e.,
S /N is less than but of order 1�, both N1 and N−1 remain
macroscopic �with N1→ �N+S� /2 and N−1→ �N−S� /2�
while N0 becomes of order unity. This means as S increases,
the Sz=0 component is completely depleted. Although the
system is still fragmented, the number of fragmented pieces
is reduced from 3 to 2, even for a tiny spin polarization.
Further analysis �13� shows that as one increases S, the
fluctuations ��N1

2�= �N1
2�− �N1�2 drop rapidly.

The reduction in the number of fragmented pieces mirrors
the previously discussed reduction in the size of the space of
degenerate mean-field states. In the absence of a magnetic
field, polar states with arbitrary n̂ are degenerate, while a
magnetic field in the ẑ direction favors those with n̂ pointing
in the x-y plane.

To connect the exact polarized states to the mean-field
states, we use the relation A†2=−2a1

†a−1
† +a0

†2, Eq. �63�, to
write

�A†2��N−S�/2�0� = 	
p=0

�N−S�/2

Dp�p,N − S − 2p,p� , �74�

where the exact form of Dp is not important for our discus-
sion. If we now act on �A†2��N−S�/2�0� by a1

†, the coefficients
of the large-p states in Eq. �74� will be bosonically enhanced
via a1

†�N1�=��N1+1��N1+1�. Further acting on the same
state by a1

† eventually picks out the term with largest p,
which is ��N+S� /2 ,0 , �N−S� /2�, in the sum Eq. �74�. This
process is equivalent to replacing a1

†S�−2a1
†a−1

†

+a0
†2��N−S�/2�0� by a1

†S�−2a1
†a−1

† ��N−S�/2�0�. We then have

�S,S� � a1
†S�A†2��N−S�/2�0� � a1

†S�− 2a1
†a−1

† ��N−S�/2

� a1
†�N+S�/2a−1

†�N−S�/2�0� . �75�

From our previous analysis of the two-well system it is clear
that this state is formed from an angular average of Eq. �57�.
The field gradient term �53� plays the role of tunneling in the
two-well system and can drive the system from a fragmented
to coherent state.

To complete the connection between these examples, we
note that when the occupation of the Sz=0 state is negligible,
we can set a0=0 and only two spin states are required to
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describe the system. Under these conditions, the Hamiltonian
for the spin-1 gas �Eqs. �51�–�53�� reduces to the two-well
Hamiltonian �20� with U=4C, t=−�, and an asymmetry be-
tween the wells given by p. This analogy breaks down when
p→0 and the Sz=0 state becomes occupied.

C. Fast rotating Bose gas

In the previous cases of pseudospin-1 /2 and spin-1 Bose
gases, the number of degenerate single-particle states is of
order unity, far fewer than the number of bosons. Bose gases
with large amounts of angular momentum have just the op-
posite behavior; the number of nearly degenerate states can
be much larger than the number of particles. As we shall see,
for relatively small angular momentum, fragmentation simi-
lar to that in pseudospin-1 /2 and spin-1 Bose gases can oc-
cur. However, for very large angular momentum, it is ener-
getically more favorable for a repulsive Bose gas to organize
itself into a quantum Hall state, which possesses an extreme
form of fragmentation in which all traces of conventional
condensation disappear. Before discussing the fragmenta-
tions of rotating Bose gas, we first discuss how the single
particle energy levels of a rotating Bose gas turn into Landau
levels and achieve high degeneracy as the angular momen-
tum of the system increases. For simplicity, we limit the
discussion to two-dimensional �2D� systems.

1. Lowest Landau levels and the general properties
of many-body wave functions in lowest Landau levels

The single-particle Hamiltonian for a particle in the
rotating harmonic trap is

h0 − �Lz =
p2

2M
+

1

2
M��

2 r2 − �ẑ · r � p , �76�

where �� is the trap frequency and � is the rotational fre-
quency of the trap. Equation �76� can be written as

h0 − �Lz =
�p − M��ẑ � r�2

2M
+

1

2
M���

2 − �2�r2. �77�

If one rewrites p−M��ẑ�r as p−eB�r /2c, with eB /Mc
=2��, one sees that Eq. �77� is identical to the Hamiltonian
of an electron in a magnetic field Bẑ in a harmonic potential
with reduced frequency ��

2 −�2. To diagonalize the single-
particle Hamiltonian, Eq. �76�, we begin by noting that
the 2D simple harmonic oscillator H0=p2 /2M +M��

2 r2 /2
is diagonalized as h0=����ax

†ax+ay
†ay +1�, where

ax= �d /��px− ix /d, ay = �d /��py − iy /d, d2=� /m��, and
Lz=−i��ax

†ay −ay
†ax�. Defining a±= �ax± iay� /�2, we have

Lz = − ��a+
†a+ − a−

†a−� �78�

and

h0 − �Lz = ���� + ��a+
†a+ + ���� − ��a−

†a− + ���.

�79�

The eigenstates are therefore

�n,m� =
a+

†n

�n!

a−
†m

�m!
�0� , �80�

with eigenvalues

En,m = ���� + ��n + ���� − ��m + ���, �81�

where n ,m=0,1 ,2 , . . .. The energy levels, shown in Fig. 1,
are organized into Landau levels, labeled by n, separated by
�E1=����+��. States within a given Landau level are la-
beled by m with spacing �E2=����−��. At criticality,
�=��, each Landau level becomes infinitely degenerate.

The many-body Hamiltonian, including a contact
interaction g, is

H = 	
i=1

N

�hi − �Lzi� + g	
i
j

��ri − r j� . �82�

As �→��, mixing is the strongest among the states in the
same Landau level. To simplify matters, we consider only
extremely weak interactions, gn�2��. This limit is natu-
rally reached when � is close to ��, where the centrifugal
potential largely cancels the trapping potential and the cloud
becomes large and dilute. For such weak interactions, only
the lowest Landau level is populated. The eigenfunctions
un=0,m�r� in the lowest Landau level,

um�r� =
�z/d�m

��d2m!
e−�z�2/2d2

 �r�m�, z  x + iy , �83�

are angular momentum eigenstates with L=m and a spatial
peak at ��m�r2�m�=d�2m+1.

The many-body wave function for a systems of N bosons
is then

FIG. 1. �Color online� Energy eigenvalues of a two-dimensional
harmonic oscillator as a function of angular velocity �. For clarity
only seven values of m are shown, so that the infinite degeneracies
at �=�� appear to be only sevenfold. The inset shows the energy
states at �=0 as a function of their angular momentum L. �Colors:
each Landau level is colored with a distinct hue.�
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��r1, . . . ,rN� = 	
�m�

C�m�um1
�r1� ¯ umN

�rN� , �84�

where �m� denotes the set of non-negative integers
�m1 ,m2 , . . . ,mN�. Since, apart from the Gaussian factor, the
single-particle wave functions are of the form um�zm, the
many-body wave function is

��r1, . . . ,rN� = f�z1, . . . ,zN�exp�− 	
i=1

N

�zi�2/2d2� , �85�

where f is an analytic function which is symmetric in zi. In
particular, a Bose-condensed state corresponds to

�w�r1, . . . ,rN� = �
i=1

N

w�ri�, w�r� = 	
m

�mum�r� . �86�

If � is also an eigenstate of the total angular momentum
Lz=L, then f in Eq. �85� must be a homogeneous symmetric
polynominal of �zi� of degree L. Moreover, the single particle
density matrix in the angular momentum basis must be
diagonal—i.e.,

�am
† an� = �mn�am

† am� . �87�

Thus a Bose-Einstein-condensed state �Eq. �86�� that is
also an angular momentum eigenstate must be fully con-
densed into the single-particles state um—i.e., w�r�=um�r�.
The total angular momentum must then be L=mN�. Such a
coherent state, however, offers no flexibility to redistribute
particles to lower the energy and is therefore unlikely to be
the ground state at fixed angular momentum or fixed rota-
tional frequency �, except for certain special cases in which
parameters of the system are carefully tuned. A general Bose-
Einstein-condensed state, Eq. �86�, would be one where w�r�
contains more than a single angular momentum state um.
Such states break rotational symmetry and are not angular
momentum eigenstates. Furthermore, due to rotational sym-
metry, any rotation of w �i.e., w�r ,�→w�r ,+��� will have
the same energy and angular momentum L= ��w�Lz��w�.
One can therefore form an angular momentum eigenstate
with angular momentum L by forming the average

�L�r1, . . . ,rN� =� d� eiL����ri,i + ��� . �88�

Such averaging always lowers the energy of the system and
generically results in a fragmented state. Specific examples
follow. Note that with small modification these arguments
also apply in the general case when interactions are not
weak.

2. Ground state of the rotating Bose gas with attractive
interactions

For the rotating Bose gas with attractive interaction,
Wilkin, Gunn, and Smith �10� pointed out the lowest energy
state with nonzero angular momentum is one with all angular
momentum carried by the center of mass and has the form

��r1, . . . ,rN� = K�Z/d�L exp�− 	
i=1

N

�zi�2/2d2� , �89�

where Z is the center of mass and K is a normalization con-
stant,

Z =
1

N
	
i=1

N

zi, K =
1

�L!��d2�N
. �90�

It is straightforward to show that the single-particle density
matrix of this state is

�am
† an� = �mnN� L!�N − 1�L−m

m!�L − m�!NL� . �91�

The ground-state is fragmented because Eq. �91� has a dis-
tribution of large eigenvalues. Later, Pethick and Pitaevskii
�47� pointed out that this state is of the form

��r1, . . . ,rN� = �c.m.�R�rel���� i�� , �92�

where �c.m.�R�= �Z /d�Le−�Z�2/2d2
is the wave function of the

center of mass R=	i=1
N ri /N and rel���� i��

=K exp�−	i=1
N ��� i�

2/2d2� is a product of single-particle states,
where the particle coordinates are ��� i=ri−R�. Given this
structure, it is natural to refer to this state as being singly
condensed in the center-of-mass frame. Here, we show that
this exact ground state can also be written as a symmetry
average of broken symmetry states of the form of Eq. �88�,
as in many of the previous examples.

Attractive interactions favor particles clumping together.
In homogeneous systems, such clumping leads to collapse.
In the fast rotating limit, however, the analyticity of the wave
function in the lowest Landau level and the Gaussian factor
impose strong constraints on the degree of localization pos-
sible. The most localized state is u0�r�, a Gaussian of a width
given by the trap length d. A similar localized wave packet at
location aax+ iay is

a�r� = e�2a*z−�z�2−�a�2�/2d2
/��d �93�

=e−�z − a�2/2d2
e�a*z−az*�/2d2

/��d , �94�

which gives

�a�r��2 = e−�z − a�2/2d2
/�d2. �95�

A many-body coherent state formed from these single-
particle states is

��r1, . . . ,rN� = �
i=1

N

a�ri� . �96�

This state carries angular momentum �L= ���Lz���
= ��� 
dr �†�r�r� ��� / i���r� ���, with

L = N� dr�a�r��2��r/d�2 − 1� = N�a/d�2. �97�

The single-particle density matrix is
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��†�r����r�� = Na
*�r��a�r� , �98�

in which

�am
† an� = �d2Num

* �a�un�a� = N� L

N
�me−L/N

m!
. �99�

From this degenerate set of coherent states we construct an
eigenstate of angular momentum by taking the superposition

1

dL+2NL�L!
� d2a

2�
e−�a�2/2d2

aL�a� =

ZL exp�− 	
i=1

N

�zi�2/2d2�
�L!��d2�N

,

�100�

where Z= 1
N	i=1

N zi /d.

3. Fragmentation in a rotating Bose gas with repulsive
interactions

Similar fragmentation is found in the repulsive case,
which for L�N� is described by a vortex lattice. A general
mean-field state is of the form Eq. �86�, with
w�r�= f�z�e−�z�2/2d2

,

f�z� = �
a

�z − a� , �101�

where the zeros a are the locations of the vortices �48�. The
angular momentum carried by this state can be obtained by
noting that within the lowest Landau level,

�Lz� = ����r/d�2 − 1�� , �102�

which increases as the density of vortices increases. Follow-
ing the arguments which we used for the attractive case, we
are once again led to a fragmented condensate �see �49� for
numerical studies�.

The rotating Bose gas with repulsive interactions is,
however, much richer than that with attractive interactions,
since the mean-field picture breaks down in a fundamental
way at large values of angular momentum. One sees
this breakdown by first noting that with increase of the
angular momentum, the vortex density increases and the par-
ticle density decreases �48,50,51�. Eventually, the density
of vortices is comparable to the density of particles and one
can significantly improve the energy of the system by corre-
lating the positions of the vortices with the positions of the
particles. These correlations cannot be captured by any
simple manipulation of the mean-field states; the general de-
scription of the system with large angular momentum is quite
complicated �24,25�.

Despite this complexity, there is a limit in which we can
find the exact ground state. Imagine that the system is rotat-
ing with � sufficiently close to �� that the energy spacing
within the lowest Landau level may be treated as a perturba-
tion. One would find the ground state by first minimizing the
interaction energy in the lowest Landau level and then per-
turbatively including the level spacing. For short-ranged in-
teractions the energy is minimized by any state for which the
wave function vanishes whenever two particles come

together. Degenerate perturbation theory then says that the
lowest energy state of all these wave functions is the one
with lowest angular momentum. In the lowest Landau level,
the lowest-angular-momentum bosonic wave function which
vanishes when two particles touch is the �=1/2 Laughlin
state

���r�� = �
i
j

�zi − zj�2e−�zi�
2/2d2

. �103�

For an infinite system, one readily sees that

�am
† an� = �1/2��mn �104�

for all m. Not only are there no eigenvalues of order N, but
they are all less than unity. All traces of the conventional
Bose-Einstein condensation are obliterated.

IV. DISCUSSION

A. Salient features

The examples shown in Sec. III share a number of com-
mon features. Many of the fragmentation processes we have
discussed, such as those in Eqs. �46�, �70�, and �100�, can be
described by a family of quantum states that are weighted
averages of broken symmetry states over the space of
broken-symmetry, typically of the form

������ =� d� W��,�����c, �105�

where ���c is a coherent state with broken-symmetry param-
eter � �e.g., a spin direction�, W is a distribution function in
the space of broken symmetry, and � is the parameter that
controls the fragmentation of the system. If, as � changes—
say, from 0 to 1—W changes from a distribution sharply
peaked at �0 to a completely uniform distribution, Eq. �105�
will evolve from the coherent state �0 to a fragmented state.
Such changes in the distribution function reflect a growing
fluctuation about the initial coherent state �0 singled out by a
tiny symmetry-breaking field in the coherent regime.

For example, in the case of repulsive Bose gas in a double
well, � is the relative phase between the condensates in the
two wells and �0=0. In the spin-1 Bose gas, � is the vector
n̂ and �0 is a direction normal to an infinitesimal external
magnetic field. In the rotating attractive Bose gas, � is the
location in space of the coherent state and �0 is the equilib-
rium location determined by, e.g., a weak potential that
breaks rotational symmetry. Exactly how the fluctuations
about �0 grow depends on the specific dynamics of the sys-
tem. Large fluctuations about �0 directly reflect the compe-
tition between different degenerate states for Bose-Einstein
condensation. This competition is the ultimate cause of
fragmented structure, as discussed in the Introduction.

Another important feature of states like those in Eq. �105�
is that, as a consequence of bosonic enhancement, the range
of the control parameter � over which the system switches
from a coherent to a fragmented state shrinks with particle
number N. For a repulsive Bose gas in a double well, as
discussed in Sec. III A 2, the transition from a fragmented to
a coherent takes place around t /U
1/N �38�. A similar
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situation occurs in the spin-1 Bose gas, where the singlet
�fragmented� state gives way to a coherent state for field
gradient G
1/N �13�. Since the window for fragmentation
vanishes as N increases, fragmented condensates will not be
realized in condensed matter systems, with N�1023 par-
ticles. On the other hand, in mesocopic systems like quantum
gases with typically N�106 particles, fragmented states can
exist in parameter ranges accessible to experiment.

Although we have paid special attention to the class of
states in Eq. �105�, we must emphasize that other fragmen-
tation processes do not lead to states that are most naturally
expressed in this manner—e.g., the Schrödinger-cat family in
Eq. �47�. One can have distinct fragmented states, such as the
Fock state and the Schrödinger-cat state, with entirely differ-
ent properties but identical single-particle density matrices.
Such different states are therefore indistinguishable within
the Penrose-Onsager scheme. To tell them apart, it is neces-
sary to examine second-order correlation functions such as
number fluctuations. One needs to examine even higher-
order correlation functions to distinguish the fragmented
states of more complicated systems, such as those of F=2
Bose gases of 87Rb and the recently realized spin-3 Bose gas
of 52Cr �52�. In general, one can expect a large variety of
fragmented states, differing from each other by high-order
correlation functions.

The relative number fluctuations of a fragmented state
�such as those in the pseudospin-1 /2 and spin-1 Bose gases
discussed in Sec. III� are a measure of the stability of the
state. Huge fluctuations, such as in the Schrödinger-cat state
and the singlet state of the spin-1 Bose gas, indicate that the
system is easily damaged by external perturbations. Con-
sider, for example, a perturbation of the form H�=�c†a1
+H.c., where a1 is a boson in one of the wells in the double-
well example or a boson in the Sz=1 spin state of a spin-1
Bose gas, c† adds a particle in a different atomic state of the
same boson �e.g., a plane-wave state in the background gas�,
and � is a very small parameter. The perturbation H� acting
on the Fock state a1

†N/2a2
†N/2�0� simply changes it to another

Fock state c†a1
†N/2−1a2

†N/2�0�, which also has zero number
fluctuations �N1

2− �N1�2�=0. In contrast, H� acting on the
Schrödinger-cat state �a1

†N+a2
†N��0� collapses it into the state

c†a1
†N−1�0�, immediately reducing the enormous number fluc-

tuations of the Schrödinger-cat state to zero. More generally,
if the cat state ��Cat�= ��1�+ ��2� is a sum of two Gaussians
in number space, as shown in Eq. �47�, with one Gaussian
���1�� peaked at �N+ ,N−� and the other ���2�� peaked at
�N− ,N+�, where N++N−=N, and N+�N−, the action of H� on
��Cat� considerably enhances ��1� and suppresses ��2�.

The large effect of the small perturbation H� is due to
bosonic enhancement, which gives H��N+ ,N−�=�N+c†�N+
−1,N−� and H��N− ,N+�=�N−c†�N−−1,N+�. Since N+�N−,
the norm of H��N− ,N+� is considerably smaller than that of
H��N+ ,N−�. As a result, H���Cat��H���1���N+c†�N+
−1,N−�, which is no longer a Schrödinger-cat state. In a
spin-1 Bose gas, a similar action changes the singlet state
�2a1

†a−1
† −a0

†2�N/2�0� to one with much smaller relative number
fluctuations.

Since Schrödinger-cat-like states can collapse into Fock
states with the slightest perturbation and Fock states can

easily be reassembled into a single condensate by any small
amount of tunneling between different fragmented pieces,
why should one bother with fragmented states? Is fragmen-
tation relevant? The point, as mentioned before, is that even
though fragmented states cannot be realized in macroscopic
systems, the situation is different for mesoscopic systems
like trapped quantum gases. The huge reduction in particle
number considerably relaxes the constraint of formation of
Fock states and Schrödinger-cat-like states, and fragmented
ground states become realizable.

The phenomenon of fragmentation becomes even richer if
it takes place in both real and spin space, such as with high-
spin bosons in an optical lattices close to the Mott limit. The
combined effect of spin degeneracy and spatial degeneracy
�due to different isolated wells� produces a great variety of
quantum phases as the spin of boson increases. In addition,
the singlet ground state of a spin-1 Bose gas can also be
viewed as a “resource” for singlets and may therefore be
useful in developing quantum teleportation protocols in
optical lattices with spin-1 bosons. Our understanding of
the properties of fragmented states, and in particular their
dynamics, is at such an early stage that it leaves open con-
siderable room for inventive ideas, which is where the
excitement lies.

We stress that we have described only the simplest types
of fragmented states, and in systems with higher degrees of
degeneracies one finds fragmented states which are not sim-
ply “Fock like” or “Schrödinger cat like.” As discussed in
Sec. III C 3, one can even find states, such as the �=1/2
Laughlin state, which contain no trace of condensation. In
that example, there are no large eigenvalues singled out in
the density matrix. Instead, all the eigenvalues are identical
and of order unity.

B. Experimental consequences

At present, experiments on condensate fragmentation are
limited primarily to double-well �33� and optical-lattice sys-
tems. The latter is the many well generalization of the double
well case, and fragmentation there corresponds to the
superfluid-insulator transition �23�. In all these experiments,
interactions between bosons are repulsive, so the fragmented
condensates are of the Fock type. There have not yet been
any experiments on Bose gasses with attractive interaction in
double wells, in which case the fragmented condensates
would be Schrödinger cat like. Experimentally, Schrödinger-
cat states can be easily distinguished from Fock states be-
cause measurement processes typically affect these states
dramatically differently. For example, consider acting with

the number operator for well 1, N̂1=a1
†a1, on the the ground

state �G�. In Fock states, �G�= �N /2 ,N /2�= �F� and the result-

ing state N̂1�F�= �N /2��F� remains the Fock state. In contrast,
in a Schrödinger-cat state �Cat�= ��N ,0�+ �0,N�� /�2, we have

N̂1�Cat�= �N /�2��N ,0�. The cat state is collapsed into a con-
densate on the left well. Were one to measure particle num-
bers in wells 1 and 2 in sequence, the outcome for the Fock
state would be N /2 for each measurement since the Fock

state �F�= �N /2 ,N /2� is an eigenstate of N̂1 and N̂2; in a cat

MUELLER et al. PHYSICAL REVIEW A 74, 033612 �2006�

033612-12



state, on the other hand, the measurement of N̂1 would yield
either N or 0 with equal probability, since there is a 50-50
chance of realizing �N ,0� or �0,N� in a measurement. How-
ever, once a nonzero outcome of N1 is obtained, a subsequent
measurement of N̂2 would yield zero identically.

While a Fock state can be easily distinguished from a
Schrödinger-cat state, to distinguish a Fock state �for ex-
ample, �N /2 ,N /2�� from the corresponding coherent state
��e−i/2a1

†+ei/2a2
†�N�0,0� /�2NN!� is nontrivial. From a con-

densed matter viewpoint this result is counterintuitive, since
one would have thought systems with phase coherence are
fundamentally different from those without. For example, a
coherent condensate in a double well will have Josephson
oscillations �i.e., an oscillating particle current between the
two wells� whereas a Fock state will not. While this is true,
the situation in quantum gases is tricky because information
on particle currents is not easily accessed in typical experi-
ments. Instead, one studies coherence between condensates
through their interference. The subtleties of such interference
measurements were beautifully illustrated by Castin and
Dalibard �30�, who considered an idealized experiment
where one sequentially removes particles from the system.
They imagine sending each particle into a classical measure-
ment apparatus which measures “the pseudospin Sx opera-
tor�; i.e., this apparatus reports that the particle is either in a
symmetric or antisymmetric superposition of being in the
right and left wells. As Castin and Dalibard argue, since there
are quantum mechanical correlations in the many-body state,
each time one measures the state of one particle, the many-
body state is projected into one which is consistent with that
measurement. They show that sequentially measuring a
quantity which is sensitive to the relative phase �such as
pseudospin Sx� projects the system into a state with phase
coherence, even if it were initially incoherent.

The subtleties of interference experiments can also be un-
derstood without discussing projections. Imagine repeating
Castin and Dalibard’s thought experiment on several copies
of a state. Each time that one runs the experiment, one se-
quentially removes two particles, measuring if each particle
is in a symmetric or antisymmetric superposition of being in
the right and left wells. Ensemble averaging allows one to
measure the correlation functions �b�

†b�b 
†b �, where � , =±

and b±= �a1±a2� /�2 is an annihilation operator of a particle
in a superposition of being in each well. Naively, one would
expect coherence to be encoded in ��a1

†a2�2�= �1/4���b+
†b+

−b−
†b−��. However, as shown in Sec. II B, as long as the

number of particles is large �N�2� such expectation values
are identical for an ensemble of coherent states and for the
fragmented state.

A particularly dramatic manifestation of this equivalence
is seen in actual experiments �31,53�, where instead of re-
moving particles from the wells, one turns off the traps and
allows the cloud to expand ballistically. Naively one expects
to see a matter-wave interference pattern in the overlap re-
gion if the wells are coherent and no interference pattern if
they are incoherent. In fact, one always sees an interference
pattern. Working in the Heisenberg picture, neglecting inter-
actions during expansion, and neglecting the initial spatial
extent of the cloud in each well, the field operator at time t is

��r,t� = A�ei�r − r1�2/�2dt
2�a1 + ei�r − r2�2/�2dt

2�a2� , �106�

where the aj are zero-time annihilation operators in each well
the r j are the locations of the wells, dt

2=�t /m, and A
= �2�d2�−3/2 /�2. After expansion, a photograph is taken of
the atomic cloud. An interference pattern in this image cor-
responds to modulations of the density-density correlation
function �2�s�= 1

� 
d3r��†�r+s���r+s��†�r���r��, where �

is the volume of space. Carrying out the spatial average, one
finds

�2�s� = A4���a1
†a1 + a2

†a2�2� + 2�a2
†a1

†a1a2�cos�s · �r1 − r2�/dt
2�

+ O�1/N�� , �107�

where N is the number of particles. To leading order in N this
correlation function is identical for both Fock states and co-
herent states, implying that they both produce high-contrast
interference. This result is an example of the Hanbury
Brown-Twiss effect, whereby classical sources produce
intensity interference patterns �36�.

The only macroscopic difference between the interference
pattern from the Fock and coherent states is that for the co-
herent state the relative phase between the two wells sets the
location of the fringes. In the Fock state the fringes appear at
a random location. Recently Hadzibabic et al. �53� experi-
mentally verified this prediction in a multiwell interference
experiment.

An alternative way to determine the nature of the ground
state in a double well would be to measure the number fluc-

tuation ��N1�2= ��N̂1− N̂2�2�, which will be of the order of N
for a coherent state but of order unity for a Fock state. Fluc-
tuations �N1 below that of a coherent state �N indicate that
the system is more Fock like. Here one is trying to determine
the Fano factor F= ��N1�2 /N of the state, which is a measure
of “squeezing.”

Similar considerations can be made in thinking about a
spin-1 Bose gas, where the system can evolve from a singlet
state �S=0�� �A† ·A†�N/2�0��
dn̂�n̂ ·A†�N�0� to a coherent
�or polar� state �n̂�� �n̂ ·A†�N�0� as the external parameters
�such as magnetic field gradient, etc.� vary. We again ask
how one determines the nature of the ground state. A mea-
surement of particle number would lead to “measurement
induced coherence” �30� as in a fragmented condensate in a
double well. That is, even if one starts with a singlet state
�S=0�, a typical measurement process will select a random
direction n̂0 in spin space, so that as further measurements
are made, the system is changed more and more toward the
polar state �n̂0�. As in the double-well case, to determine the
nature of the ground state, one can study the higher-order
correlation functions. The natural physical quantity is then
the spin nematicity

Nij  � 1
2SiSj + 1

2SjSi − 1
3�ijS

2� , �108�

which can be accessed by light scattering �54�. In the singlet
state, Nij vanishes identically, whereas Nij =N��ij /3−ninj�
for the polar state. That is, as the system evolves from singlet
polar, the nematic tensor Nij grows from zero to a uniaxial
tensor of order N.
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C. Role of temperature

Up to this point, the examples of fragmentation given in
this paper have focused on the case where interaction-driven
quantum fluctuations break up the condensate. It is intu-
itively clear that thermal fluctuations can play a similar role.
A trivial example is given by a noninteracting Josephson
junction, governed by the Hamiltonian

H = − t�a†b + b†a� . �109�

This Hamiltonian is diagonal in the basis of symmetric and
asymmetric states, for which the creation operators are �a†

+b†� /�2 and �a†−b†� /�2, so the single-particle density ma-
trix is diagonal in this basis. At zero temperature only the
symmetric state is occupied—a single condensate. At very
large temperature each of these states is equally occupied so
the system is fragmented. For intermediate temperatures, the
occupation of each of these states is

n s
a

=

	
m=−N/2

N/2

�N/2 ± m�e2t�m

	
m=−N/2

N/2

e2t�m

=
N

2
! �N + 1

2
coth��t�N + 1�� −

1

2
coth��t�� .

�110�

The upper signs denote the symmetric state �s� and the lower
the antisymmetric state �a�. The crossover between the singly
condensed state at T=0 and the fragmented state at T� t is
smooth. Extensions of this argument are relevant for spinor
condensates in which one can, in principle, have a hierarchy
of transition temperatures, where the k=0 mode becomes
macroscopically occupied below some temperature Tc, but
order in the spin-channel does not occur until a lower
temperature �55�.

A vortex lattice provides a qualitatively different example
of how a finite temperature fragments a condensate. Imagine
a bucket of 4He rotating at frequency �. The ground state of
the system contains a triangular array of vortices with nv
vortices per unit area. At finite temperature the vortex lattice
is thermally excited, giving rise to a decay in the phase cor-
relations across the sample. If we let ��r� be the superfluid
order parameter coarse-grained on a scale large compared to
the vortex spacing, then according to �50,56�, the correlation
function ��*�r����r��� decays as �r−r��−� for large separa-
tions. The exponent �=1/ �3�2�rv"

2� is proportional to the
ratio of the distance between particles to the distance be-
tween vortices. Here the particle number density is �, the
thermal wavelength is "=�2� /mkbT, and the distance be-
tween vortices is rv. This algebraic decay of correlations in
real space corresponds to an algebraic decay in momentum
space. For ��3, the occupation of the k=0 mode scales as
N0�L3−�, and as as k→0, the occupations of the k�0
modes scale as Nk�k�−3. Thus the number of macroscopi-
cally occupied modes scales as L�, and for carefully chosen
L and � a fragmented state can result.

For a typical helium experiment ��10−8, and the deple-
tion caused by this effect is negligible. Experiments on
alkali-metal gases—e.g., �57,58�—create vortex lattices with
rv�5 	m and a particle density ��1014 cm−3, for which
��10−3, also a minor correction. Experiments with smaller
vortex lattices in Paris �59� have a similar vortex spacing
rv�2 	m and density ��1014 cm−3, yielding a comparable
value for �. Although vortex lattices in current experiments
are not thermally fragmented, there does not appear to be any
fundamental impediment to making � larger.

D. Other recent work

Not surprisingly, given the fascinating nature of frag-
mented states, several recent papers �all cited in the relevant
sections of this paper� have been investigating models simi-
lar to those discussed here. As a guide to the reader, we
briefly summarize these works, presenting them in roughly
the same order as they appear in the main text.

The two-state system was explored by Nozières �9�, who
pointed out the existence of fragmentation in that system.
The generic stability of a two-state fragmented condensate
was considered by Rokhsar �16�. One realization of this
model would be to place atoms in bona fide double-well
potentials. Due to mode mixing, such a system is not identi-
cal to a simple two-mode model, and several authors have
explored more realistic models. Spekkens and Sipe �17� used
a variational approach to compare fragmented and singly
condensed states in such potentials. More recently, Streltsov
and Cederbaum �60�, along with Streltsov, Cederbaum, and
Moiseyev �61�, produced similar results through a multi-
mode mean-field theory. The evolution of the ground state
from a Fock state to a coherent state and from a coherent
state to a Schrödinger-cat state was studied by Ho and
Ciobanu �38�. Experiments have recently produced a
condensate confined in a double-well trap �33�.

The fragmented nature of the ground state of the spin-1
Bose gas was first noted by Nozières and Saint James �8�.
Later studies by Law, Pu, and Bigelow �46� investigated the
ground-state properties and the spin dynamics in terms of the
basis used in Eq. �74�. Ho and Yip �13� showed that the
fragmented singlet state has huge fluctuations; they also
showed the relation between this fragmentation and sponta-
neous symmetry breaking. They explicitly showed how mag-
netic fields and field gradients drive the system into a singly
condensed state. Similar considerations were addressed by
Koashi and Ueda �12�. Javanainen discussed issues involving
the measurement of the fragmented spin-1 ground state �18�.

The rotating attractive gas was first studied by Wilkin
et al. �10�, who noted that the ground state was fragmented.
The connection between this fragmentation and symmetry
breaking was first discussed by Pethick and Pitaevskii �47�.

There have been extensive studies of the properties of
the rotating repulsive gas in the lowest Landau level—many
of which have focused on the structure of the order in
the single-particle density matrix. These works have mainly
used a combination of exact diagonalization and variational
techniques. A particularly relevant paper is the exact diago-
nalization study of Liu et al. �49�, which focuses on the
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symmetry-breaking nature of the vortex states. A related pa-
per by Jackson et al. �62� compares mean-field and exact
wave functions at various values of the angular momentum.
The Goldstone mode associated with vortex nucleation was
discussed by Ueda and Nakajima �63�.

Fragmentation occurs in “clumped” bosonic systems with
attractive interactions. Ueda and Leggett used a two-mode
approximation �34� to study fragmentation and soliton for-
mation in a one-dimensional attractive Bose gas. A quite
thorough comparison of mean-field theory and exact diago-
nalzation is found in the articles by Kanamoto et al. �64�, as
well as the closely related work of Kavoulakis �65� and the
detailed studies of Alon et al. �66�. Montina and Arecchi �67�
use a Monte Carlo scheme to investigate the degree of frag-
mentation of this system. In three dimensions, Elgaroy and
Pethick �15� showed that a harmonically trapped gas of at-
oms with attractive interactions does not form a stable
fragmented state.

Other systems with symmetry breaking and fragmentation
include phase-separated two-component gases �68� and rotat-
ing gases during a phase-slip event �35�. Boson ground states
where the condensate is broken into a macroscopic number
of pieces include the Mott insulator �23�, fractional quantum
Hall states �24,25�, and low-dimensional Bose gas �28,69�.
Aspects of the dynamics of regaining phase coherence
among condensates are discussed by Yi and Duan �70�, a
paper closely related to discussion of how the measurement
process is influenced by fragmentation �29,30�.

Finally we mention the lecture notes produced by Castin
and Herzog �14�, which lucidly introduces fragmentation and
analyzes the case of spin-1 bosons and of the one-
dimensional attractive gas. They included an extended
discussion of the role of symmetry breaking.

V. SUMMARY

Bose-Einstein condensation is remarkably robust. It is
therefore exciting to search for zero-temperature bosonic
states which are not condensed and to understand the process
that breaks up the condensate. Fragmentation, where the con-
densate breaks up into a few pieces, is the first step in this
journey, which eventually ends at strongly correlated states
possessing no trace of condensation.

We have described some of the canonical models which
have fragmented ground states and extracted their properties.
We see that there is a rich variety of fragmented ground
states. Often fragmentation is associated with restoring a bro-
ken symmetry. Sometimes it is accompanied by order in
higher-order correlation functions. The one unifying feature
appears to be a combination of near-degeneracies and inter-
actions. The higher the degree of degeneracy, the more
fragmented the condensate may become.
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