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Phenomenon of Collapse

* There are 3 types of collapses
* Neural collapse in supervised learning
* Posterior collapse in Bayesian deep learning
* Dimensional collapse in self-supervised learning

* While independently discovered, all collapses happen when the
learned data representation becomes low-rank
* We thus take this as the definition of “collapse” in this presentation

* “complete collapse”
* “partial collapse”



Posterior Collapse

 In Bayesian deep learning (especially in the setting of variational
autoencoders (VAE)), posterior collapse happens when the learned
posterior distribution becomes the same as the prior
* Equivalent to that the mean of the latent variables is low-rank

* Chronologically speaking, this is the earliest discovered example of collapse
(Alemi et al., 2018; Lucas et al., 2019)

* Posterior collapse is mainly regarded as a bad thing to avoid

* Objective: Minimize the loss function:

L = Lijketinooa + BLprior
* Collapse happens when £ is large



Posterior Collapse

Partial collapses

complete collapse

(d) B = 3.5, remaining modes: 2 (e) B =4, remaining modes: 1 (f) B = 6, remaining modes: 0

Figure 3: MNIST generation under different 3. We see that the generated images lose diversity and variation
as 3 increases. The number of mode left is estimated by the theoretical prediction of thresholds of each
singular values. >



Posterior Collapse

* An open question:

Why does posterior collapse only happen for VAE, but not for other types of
Bayesian learning?



Neural Collapse

* In supervised learning, a neural collapse happens when the data
representations are the same as the class mean

* Namely, it happens when the inner class variation vanishes (Papyan 2020)

* Neural collapse is commonly regarded as a good thing because it suggests
that the model is only learning the task relevant features

* Objective: Minimize the loss function:
L= Lclassification + y[L, reg.]



Neural Collapse

* Objective: Minimize the loss function:
L= Lclassification +y[L, reg.]

Init. (roughly) zero training error. convergence
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Neural Collapse

* Why does the collapse not happen for a linear regressor?

* Ridge linear regressor:
w* = [E[xxT] + yI] 1 E[xy]



Dimensional Collapse

* In self-supervised learning, dimensional collapse refers to the case
when the learned representation becomes low-rank (Jing et al, 2021)

* Sometimes, it is regarded as a good thing (Cosentino et al., 2022), sometimes
it is regarded as a bad thing (Jing et al, 2021)

* Objective: Minimize the loss function:

L = Lattraction + Lrepulsion (CZ)
* Lyttraction €Ncourages representations of similar data to be close

* Lyepuision €NCOuUrages representations of dissimilar data to be distant

* a controls the relative tradeoff between Lyttrgction aNd Lyepuision
* One example is the strength of data augmentation
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Dimensional Collapse

A 37.0
120
A stronger augmentation =
g g 5 100 A lower rank leads to better performance
leads to lower rank =
o
L. 80+
2
o
[a 60 -
P Large Aug Acc. 62.5
——— Moderate Aug. ~—
401 — small Aug.

0 100 200 300 400 500
Epochs

Figure 1: Evolution throughout contrastive SSL training of the rank of a linear projector of
dimension 512 x 128 for different augmentation strengths, and the associated accuracy obtained
on Cifar100 by using the representation extracted in the encoder space. Large, moderate, and
small augmentations refer to the strength of the data augmentation applied to the input samples (see Table 2
for each configuration). The smaller the strength of the data augmentation policy, the less the projector
suffers from dimensional collapse. However, when the projector is affected by a substantial dimensional
collapse, the encoder representation becomes suitable for the downstream task. In this work, we demystify
this intriguing relationship between augmentation strengths, encoder embedding, and projector geometry.
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Collapses

* In short, collapses happen everywhere in deep learning
* Why?

* |s there a universal cause?

* These examples often share two common features

1. A data-dependent term and an (effective) regularization term exist

* A Natural Hypothesis: competition between data learning and regularization effect leads
to collapses

2. Models are often trained for very long and sometimes to convergence

* A Natural Hypothesis: the collapses are related to the properties of the stationary points
of the training objective
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A Landscape Perspective of Collapse

* Is the competition between feature learning and regularization
sufficient to cause collapse?

* No.
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A Landscape Perspective of Collapse

* Minimal example:

2 2
* Ridge linear regression: L(W) = Ex||Wx — y|| + )/||W||
* Let Ay := E,[xx"] denote the feature covariance (or, just, “feature” for short)

* The stationary point is unique:
W = [Ay + yI7 Ex[xy]

* The model is full-rank as along as A is full-rank -- there is no collapse
* Lesson: we need either an advanced loss function or a deeper model

A —— trivial model

0.8 1
A ResNetl8

Linear regression is = perceptron (D=0)
insensitive to regularization, LinearNet D=8
whereas deep models are
hypersensitive

test acc.
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A Landscape Perspective of Collapse

* Hypothesis: Depth plays a key role in collapse
* Minimal example (one-h-layer linear model):

2
dy d

Laga,(UW)=E,E, (z Uje; Zsz‘xz‘ - y) + Yl WP +vl|U|,
J 7

* y = y(x) is one-dimensional

* ¢ are independent random variables with unit mean and g2 variance
* For example, due to the use of dropout

* Two layers have different strengths of regularization

* We want to find the global minimum W™ and U



Solution

)

» One can show that, defining t := ||E[xy]|| - v¥aVw, at global minima
b+t if t>0
b=0 if t<0

* Some “physics” messages:

1. b isan order parameter

2. We have a second-order phase transition (if we treat the training loss as a
free energy)

* Let b denote the norm of the model (b = \/HWHZ + HU ‘2

No collapse

Complete collapse

3. ||Ex [xy]||2 = ¥,V is the critical point
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We can prove rigorously...

Theorem 1. The global minimum U, and W, of Eq. (2) is U, =0 and W, =0 if and only if

IE[zy]I* < Yuew-

When |[E[zy]|]> > Yurw, the global minima are

U, = br;
W, =rE[zy]Th [b2 (02 +dy1) Ag + ’wa]_l :

where v = (1, ..., 1) is an arbitrary vertex of a dy-dimensional hypercube, and b satisfies

2
= Ju

Yo

H [62 (02 + dl) Ag + ')fwf]il E[zy]

(a)
4 4 stronger
regularization
. 2
Effective loss landscape: 3
= stronger
D e e _ T
-2
-2 -1 0 1 2
b
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A Landscape Perspective of Collapse

* Lesson: complete collapse happens in a two-layer linear model at
||Ex[XY]|| = YuYw
* This critical point is rather universal because
* Independent of width or data dimension

* Independent of the data covariance
* Independent of the noise

* Interpretation: a collapse happens due the competition between
signal strength and regularization
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Posterior Collapse

* For Bayesian deep learning, the minimal model is a linear latent
variable model

* Data generation process: x > z > y
* When y = x, we have an autoencoder

e Loss function:

Eo[~Eq(210) log(p(yl2)) + BDrr(q(zl2)[p(2:02.0))]
* In case of linear encoder and decoder, and Gaussian assumption, the
loss function is (U is the decoder, W/ is the encoder)

1
2)2

dec enc

5 M3 o] &3 o?
v [ [lUW @ +€) —y|* + B2 | W | +Z —log —*

?]enc r]enc
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Posterior Collapse

* The singular values (4;, 8;) of U and W are the order parameters, and
the phase transition is again second-order

A OC\/zz :Bndec
=0
e {7 are the eigenvalues of E, [xy]Ex[ y]"

. 77c21ec is the prior variance of the decoder



Posterior Collapse

* As before, we can find the global minimum rigorously

Theorem 2. The global minimum of Lyvar(U, W,X) is given by

, L
U*=FAP, W*'=A"2GOP, (16)
where F and G are derived by the SVD of Z. P is an arbitrary orthogonal matriz in R, and A =
diag(Ay, ..., Aq, ) and © = diag(0,...,04,) are diagonal matrices such that
Ai = ! max (0,¢2 - 8n..) (17)
LI ¢ 160 T Plgec
7IE!HC
0. = MNenc . (O CZ _ B 2 ) (18)
i = ——\/max (0,¢7 = 513, )-

1
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(d) B = 3.5, remaining modes: 2 (e) B =4, remaining modes: 1 (f) B =6, remaining modes: 0

* The singular values (A;, 8;) of U and W are the order parameters, and
the phase transition is again second-order

30 1 1.0
0.8 1
20 1
0.6 A
- 12)
0.4 A
10 A
0.2 A
0 L T T T T 0.0 L T T T T
0 2 4 6 0 2 4 6
B B

O'ii51if}li=9i=0
* There are multiple collapses (equal to the number of distinct {;)
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Posterior Collapse

* We can also plot the effective landscape

* Train a model on MNIST in the non-collapsed phase and rescale all the
weights by a

100

—— B=05
=10

strnr:h

prior

(f)

80 4

60 -

404

20 A

0.00 025 050 075> 100 1.25 1.50
a




Dimensional Collapse

* Dimensional collapses are a little different: it does not require depth
e The most standard loss function InfoNCE can be written as

L =B {517(2) = £ +logg [exp (=31 ) - 002 |}

1. Sample a data ¥

2. Add data augmentation € to generate x and x’

¢ Encourages x and X’ to be similar s. Sample a different data ¥, and apply data augmentation
* Encourages x and y to be dissimilar

e The loss function is invariant to a simultaneous rotation of the
learned representation: f(x) = Rf (x)



Dimensional Collapse

Landau theory!

* Linear model: f(x) = Wx

* Expand the log-exponential term to fourth order

* Assume that the data is Gaussian
L=-Te[WBWT]+Te[WSWIWxwT]. Noise strength

where B is a linear function of Ajand C,and X2 = Ay + C

Feature variance

 Note: a crucial feature of this loss is that the odd-order terms vanish.
Almost all SSL losses can reduce to this form because of the rotational
symmetry



Dimensional Collapse

* The square root of the eigenvalues of WW? are the order parameters

 When C = ¢?1
\/)]._iOC\/Cli—O'Z

—-== Theory

0.3 1

0.2 1 .t .
Critical points are
= rather smooth due
0.1 A I to the divergence

of relaxation times

0.0 A1
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Dimensional Collapse

* The effective landscape is similar for nonlinear models:

Two-layer
relu net

7.0
Two-layer 6.8 -
tanh net 6.6
6.4 1
6.2 A

6.0

5.8 1
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Dimensional Collapse

e 2-d projection of the ReLU net landscape

* f(x) € R?
* We rescale the two rows of the last-layer weight matrix by r; and r;
respectively
6.49 8.72
075 6.44 8.40
9:50 6.39 8.08
0.23 6.34 7.76
0.00 629 7.44
-0.25 6.24 7.12
-0.50 6.19 6.80
-0.75 6.14 6.48
~1.00 4 6.09 6.16




Dimensional Collapse

* ResNetl8 on CIFAR-10:

Stronger data aug. (;2 =50

L. 5°1
| -5.58 380
4.0
. . : Is.54 Is.ss
2 - 0 1 1.2 1.2
a
(a) 1D landscape (b) No collapse (c) Dimensional collapse (d) Complete collapse

Figure 2: Landscape of Resnetl8 on CIFAR10 with SimCLR qualitatively agrees with our linear
theory. (a) Training objective L as a function of a rescaling of the last layer W — aW. (b-d) L as a function
of a 2d rescaling of the last layer where the data augmentation strength is (b) small, (¢) intermediate, and
(d) strong. Red indicates areas of high loss, blue indicates areas of low loss, and stars locate local minima.
The use of data augmentation changes the stability of the origin, a qualitative change that leads to different
types of collapses in qualitative agreement with our linear theory (cf. Figure 1). Additionally, we also notice
the same qualitative changes in the landscape in simpler nonlinear models (see Appendix A).
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“Benignity” Theorems

 So far, we only considered the global minimum of the landscape

e Can local minimum cause collapse?
* |n Many Cases, No.



“Benignity” Theorems

* All local minima achieve the maximum possible rank
e Corollary: all local minima have the same rank

* Applies to posterior collapse, dimensional collapse, and supervised learning
with 1 hidden layer

* So the collapse phenomenon is something rather independent of initialization
or dynamics

* The saddle points all have lower rank than the local minima

* Unless the model is converging to saddles, analysis of the global minimum is
sufficient to understand collapse

* Lesson: the landscape of deep learning can be rather benign
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Do we only have second-order phase
transitions?

* No.



Supervised Learning

* Recall our two-layer linear model for supervised learning:
2
La,a, (U, W) (ZU € ZW;m— ) + Y| W + [T,
* We can generalize it to multiple layers:

LD 1’2*’1 L1

2
fi_._{.h:{.'!g:,..(h_) .
E:;;E_(l}___ (@) (D) ( Z L;” (U). (Z)H (2) (1)H (1). i =Y ) .'-!L||L | + Z ||I_.«1,.;(1)||?!

1,01,82,-.,1D

* D:the number of hidden layers



Supervised Learning

e Effective landscape: - 157V L'y ]}
P Mby) ==Y déj(rf(QUJr)dU)Dz ;jz]ia —

+E, [y°]-+yDdgh?,

(b) D>1

\— learning phase /
=== phase transition point

~——— trivial phase

1.5 1

stronger %

1.0 1

0.5 -

0.0+ =T N L

-0.5 4

-15 -1.0 -05 0.0 0.5 1.0 1.5

* b = 0isalways a local minimum forD > 1



Supervised Learning

* There is a first-order phase transition whenever D > 1.
* b(y) features a jump at a critical value of y

Theorem 2. Any global minimum of Eq. (9) is of the form

U= hurD;

W = birirg_lg (10)

WO = 2 By (bu T2 b [ (ba T2 b1)25% (0% + dy) Ag + 7]

where |1 = H£2 d;, §° = H;:D=2 di(o? +d;), by, >0and b; >0, and r; = (1, ..., +1) is an arbitrary

vertex of a d;-dimensional hypercube for all i. Furthermore, let by == \/||W||?/d and bp1 := by, b;
satisfies

2 2
Vi+1dr+10g 41 = Vedr-105,- (11)
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A Tentative Definition of Phase Transition

Definition (Ehrenfest-type phase transition):

L*(y) = mmi/n L(W,y)

n
We say that n-th order phase transition happens if (i) L(y)is

dy
discontinuous



Phase Transition

* One can prove the following results:
1. There is no zeroth-order phase transition (PT) for finite D
2. D =0hasnoPT
3. D =1 has asecond-order PT
4, D = 2 has a first-order PT

0.8 A —— trivial model
A ResNetl8
0.20 - hbbbbbhbhl—bbbbhllll— B perceptron (D=0)
> S LinearNet D=8
0.15 + N ® D=0 S
i . o+
= 0.10 B D=1 3041 g
- D=2 +~ x B B B B BE BE R BB
- =
L L
0.05 “."..n-l A
L Ly
... a a a a A
O’OUH *. T T T T T 0.1 T T H| H ‘|-‘ H IH H IH-\
0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.02 0.04 0.06 0.08 0.10
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Implications

* Need to escape local minimum for deeper models

Deeper models are stuck in the
trivial state for small signal

1.00 T AgAd-k Ak A-———————-
A,
A A A
0.95 - A A
g A N N - == trivial solution
ke A _
0.90 - Ad A D=0
AA N D=2 RelLU Net
A
A D=2 Tanh Net
0.85 1 . —A
0.05 0.10 0.15 0.20

[|E[xy]||
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Implications

* Critical dynamics takes a rather universal characteristic
* Training proceeds with gradient descent plus additive Gaussian noise

Deeper models feature
a wide plateau at

D = 1: no barrier
to overcome

D > 0: barriers to
overcome

Learning of
deeper models
are divided into

initialization .
regimes
0.20 1 O gHIIm 0.201 .
g 0.200 -
0.15 - |
= _0.199- 101
2 0.10 - 5 bo 5 :
h B =~ 0.198 -
0.05 - D=1 ]
| o D=2 0.197 102 4
O D=3 ]
0.00__ SEEENE———S————— 0.196 e e rreer e rrer—] .
10° 10? 102 103 104 100 10 1ot 102 103 0t
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Implications

 Sparsity is common in deep regularized models

* Example of a two-layer model trained on MNIST
* k: weight decay

10° - 0.8
2 0.6 A
b
! m
% 2 0.4
o @
e
c 0.2
—— RelU
—p— swish
4 D'D- T T T T T T T T L e N T
0.00 0.01 0.02 0.03 1074 1073 1074

node magnitude K



Last Comment

* Is landscape the only cause of collapse?
* No.



Last Comment

* Besides the landscape causes of collapse, SGD dynamics can also lead
to collapse (implicit regularization).

 Complete collapse can happen when the learning rate is too large and when
the batch size is too small

1.5 -
Global minima

Saddle points
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-15 — ;

-15 -10 -05 00 05 10 15
wy

600

500

| 400

- 300

Lo

-15 -1.0 -05 0.0 0.5 1.0 1:S
w9

8000

7000

6000

5000

r 4000

r 3000

r 2000

r 1000

Llo

Diverge

2.30 A

2-25 I 1 T T 1 1
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learning rate

Figure 3: Convergence of a two-layer one-neuron neural network to a saddle point. The blue region shows
the empirical density of converged parameter distribution. Left: A = 0.001 at step 10000 converges to global
minima. Mid: A = 0.1 at step 10000 converges to a saddle point. Right: Average loss in equilibrium as a
function of learning rate. The loss function diverges for learning rates larger than 0.108.
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A Unifying Picture

Three mechanisms
for Collapse

— |

Second-order First-order phase “Dynamical” phase
phase transitions transitions transitions
Stability of the origin Difficult to understand Induced by the implicit
matters * Occur in deeper bias of SGD

Posterior collapse
Dimensional collapse
1-hidden layer
models

models
* Factors are global
 Need to overcome
loss barriers

Large learning rate
Small batch size
Should occur in any
model (?)
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Messages

* Collapse is a ubiquitous phenomenon in deep learning and there
might exist universal explanation for it

* Landscape analysis around the origin can explain the landscape
causes of the collapse phenomenon
* The origin is a very special point in deep learning!
* Phase transition behaviors are ubiquitous in deep learning in the form
of collapses

* (Alternatively) Collapses can be understood in the form of phase
transitions

* Norm of the model / singular values of the weight matrices are good
candidates of order parameters

* There are also non-landscape causes of collapse
* Implicit bias!



An Important Question

e Can collapse explain the success of deep learning?

* Collapse encourages low-rankness and sparsity, which are good candidates for
explaining generalization

* Can we use collapse to design better learning algorithms?
* Do biological brains “collapse”?




Partially based on...
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