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Phenomenon of Collapse

• There are 3 types of collapses
• Neural collapse in supervised learning

• Posterior collapse in Bayesian deep learning

• Dimensional collapse in self-supervised learning

• While independently discovered, all collapses happen when the 
learned data representation becomes low-rank
• We thus take this as the definition of “collapse” in this presentation

• “complete collapse”

• “partial collapse”
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Posterior Collapse

• In Bayesian deep learning (especially in the setting of variational 
autoencoders (VAE)), posterior collapse happens when the learned 
posterior distribution becomes the same as the prior
• Equivalent to that the mean of the latent variables is low-rank

• Chronologically speaking, this is the earliest discovered example of collapse 
(Alemi et al., 2018; Lucas et al., 2019)

• Posterior collapse is mainly regarded as a bad thing to avoid

• Objective: Minimize the loss function:
𝐿 = 𝐿𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝛽𝐿𝑝𝑟𝑖𝑜𝑟

• Collapse happens when 𝛽 is large
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Posterior Collapse

Partial collapses

complete collapse
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Posterior Collapse

• An open question:
Why does posterior collapse only happen for VAE, but not for other types of 
Bayesian learning?
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Neural Collapse

• In supervised learning, a neural collapse happens when the data 
representations are the same as the class mean
• Namely, it happens when the inner class variation vanishes (Papyan 2020)

• Neural collapse is commonly regarded as a good thing because it suggests 
that the model is only learning the task relevant features

• Objective: Minimize the loss function:
𝐿 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛾[𝐿2 𝑟𝑒𝑔. ]
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Neural Collapse

• Objective: Minimize the loss function:
𝐿 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛾[𝐿2 𝑟𝑒𝑔. ]

Init. (roughly) zero training error. convergence
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Neural Collapse

• Why does the collapse not happen for a linear regressor?

• Ridge linear regressor:
𝑤∗ = 𝐸 𝑥𝑥𝑇 + 𝛾𝐼 −1𝐸[𝑥𝑦]
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Dimensional Collapse

• In self-supervised learning, dimensional collapse refers to the case 
when the learned representation becomes low-rank (Jing et al, 2021)
• Sometimes, it is regarded as a good thing (Cosentino et al., 2022), sometimes 

it is regarded as a bad thing (Jing et al, 2021)

• Objective: Minimize the loss function:
𝐿 = 𝐿𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝛼)

• 𝐿𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 encourages representations of similar data to be close

• 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 encourages representations of dissimilar data to be distant

• 𝛼 controls the relative tradeoff between 𝐿𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 and 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛
• One example is the strength of data augmentation
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Dimensional Collapse
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A lower rank leads to better performance
A stronger augmentation 
leads to lower rank



Collapses

• In short, collapses happen everywhere in deep learning
• Why?

• Is there a universal cause?

• These examples often share two common features
1. A data-dependent term and an (effective) regularization term exist

• A Natural Hypothesis: competition between data learning and regularization effect leads 
to collapses

2. Models are often trained for very long and sometimes to convergence
• A Natural Hypothesis: the collapses are related to the properties of the stationary points 

of the training objective
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A Landscape Perspective of Collapse

• Is the competition between feature learning and regularization
sufficient to cause collapse?
• No.
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A Landscape Perspective of Collapse
• Minimal example:

• Ridge linear regression: 𝐿 𝑊 = E𝑥 𝑊𝑥 − 𝑦
2
+ 𝛾 𝑤

2

• Let 𝐴0 ≔ E𝑥[𝑥𝑥
𝑇] denote the feature covariance (or, just, “feature” for short)

• The stationary point is unique:
𝑊 = 𝐴0 + 𝛾𝐼 −1𝐸𝑥 𝑥𝑦

• The model is full-rank as along as 𝐴0 is full-rank -- there is no collapse

• Lesson: we need either an advanced loss function or a deeper model

Linear regression is 
insensitive to regularization, 
whereas deep models are 
hypersensitive
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A Landscape Perspective of Collapse

• Hypothesis: Depth plays a key role in collapse

• Minimal example (one-h-layer linear model):

• 𝑦 = 𝑦(𝑥) is one-dimensional

• 𝜖 are independent random variables with unit mean and 𝜎2 variance
• For example, due to the use of dropout

• Two layers have different strengths of regularization

• We want to find the global minimum 𝑊∗ and 𝑈∗

16



Solution

• Let 𝑏 denote the norm of the model (𝑏 = 𝑊
2
+ 𝑈

2
)

• One can show that, defining 𝑡 ≔ 𝐸𝑥 𝑥𝑦 - 𝛾𝑢𝛾𝑤, at global minima
𝑏 ∝ 𝑡 𝑖𝑓 𝑡 > 0
𝑏 = 0 𝑖𝑓 𝑡 ≤ 0

• Some “physics” messages: 
1. 𝑏 is an order parameter

2. We have a second-order phase transition (if we treat the training loss as a 
free energy)

3. 𝐸𝑥 𝑥𝑦
2
= 𝛾𝑢𝛾𝑤 is the critical point

No collapse

Complete collapse
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We can prove rigorously…

Effective loss landscape:
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A Landscape Perspective of Collapse

• Lesson: complete collapse happens in a two-layer linear model at
𝐸𝑥 𝑥𝑦 = 𝛾𝑢𝛾𝑤

• This critical point is rather universal because
• Independent of width or data dimension

• Independent of the data covariance

• Independent of the noise

• Interpretation: a collapse happens due the competition between 
signal strength and regularization
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Posterior Collapse

• For Bayesian deep learning, the minimal model is a linear latent 
variable model 

• Data generation process: 𝑥 → 𝑧 → 𝑦
• When 𝑦 = 𝑥, we have an autoencoder

• Loss function: 

• In case of linear encoder and decoder, and Gaussian assumption, the 
loss function is (𝑈 is the decoder, 𝑊 is the encoder)
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Posterior Collapse

• The singular values (𝜆𝑖 , 𝜃𝑖) of 𝑈 and 𝑊 are the order parameters, and 
the phase transition is again second-order

𝜆𝑖 ∝ 𝜁𝑖
2 − 𝛽𝜂𝑑𝑒𝑐

2

𝜆𝑖 = 0

• 𝜁𝑖
2 are the eigenvalues of 𝐸𝑥 𝑥𝑦 E𝑥 𝑥𝑦 𝑇

• 𝜂𝑑𝑒𝑐
2 is the prior variance of the decoder
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Posterior Collapse

• As before, we can find the global minimum rigorously
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Posterior Collapse

• The singular values (𝜆𝑖 , 𝜃𝑖) of 𝑈 and 𝑊 are the order parameters, and 
the phase transition is again second-order

• There are multiple collapses (equal to the number of distinct 𝜁𝑖)
𝜎𝑖 is 1 if 𝜆𝑖 = 𝜃𝑖 = 0
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Posterior Collapse
• We can also plot the effective landscape

• Train a model on MNIST in the non-collapsed phase and rescale all the 
weights by 𝑎
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Dimensional Collapse
• Dimensional collapses are a little different: it does not require depth

• The most standard loss function InfoNCE can be written as

• Encourages 𝑥 and 𝑥′ to be similar

• Encourages 𝑥 and 𝜒 to be dissimilar

• The loss function is invariant to a simultaneous rotation of the 
learned representation: 𝑓 𝑥 → 𝑅𝑓(𝑥)

1. Sample a data ො𝑥

2. Add data augmentation 𝜖 to generate 𝑥 and 𝑥′

3. Sample a different data Ƹ𝜒, and apply data augmentation
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Dimensional Collapse

• Linear model: 𝑓 𝑥 = 𝑊𝑥

• Expand the log-exponential term to fourth order

• Assume that the data is Gaussian

where 𝐵 is a linear function of 𝐴0 and 𝐶, and Σ = 𝐴0 + 𝐶

• Note: a crucial feature of this loss is that the odd-order terms vanish. 
Almost all SSL losses can reduce to this form because of the rotational 
symmetry

Landau theory!
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Dimensional Collapse

• The square root of the eigenvalues of 𝑊𝑊𝑇 are the order parameters

• When 𝐶 = 𝜎2𝐼

𝜆𝑖 ∝ 𝑎𝑖 − 𝜎2

Critical points are 
rather smooth due 
to the divergence 
of  relaxation times
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Dimensional Collapse

• The effective landscape is similar for nonlinear models:

Two-layer 
tanh net 

Two-layer 
relu net 
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Dimensional Collapse

• 2-d projection of the ReLU net landscape

• 𝑓 𝑥 ∈ 𝑅2

• We rescale the two rows of the last-layer weight matrix by 𝑟1 and 𝑟2
respectively
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Dimensional Collapse

• ResNet18 on CIFAR-10:
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“Benignity” Theorems

• So far, we only considered the global minimum of the landscape

• Can local minimum cause collapse?
• In many cases, no.
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“Benignity” Theorems

• All local minima achieve the maximum possible rank
• Corollary: all local minima have the same rank

• Applies to posterior collapse, dimensional collapse, and supervised learning 
with 1 hidden layer

• So the collapse phenomenon is something rather independent of initialization 
or dynamics

• The saddle points all have lower rank than the local minima
• Unless the model is converging to saddles, analysis of the global minimum is 

sufficient to understand collapse

• Lesson: the landscape of deep learning can be rather benign
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Do we only have second-order phase 
transitions?
• No.
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Supervised Learning

• Recall our two-layer linear model for supervised learning:

• We can generalize it to multiple layers:

• 𝐷: the number of hidden layers
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Supervised Learning
• Effective landscape:

• 𝑏 = 0 is always a local minimum for 𝐷 > 1

𝐷 > 1

𝐷 = 1
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Supervised Learning
• There is a first-order phase transition whenever 𝐷 > 1.
• 𝑏(𝛾) features a jump at a critical value of 𝛾
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A Tentative Definition of Phase Transition

Definition (Ehrenfest-type phase transition):
𝐿∗ 𝛾 ≔ min

𝑊
𝐿 𝑊, 𝛾

We say that 𝑛-th order phase transition happens if 
𝑑

𝑑𝛾

𝑛

𝐿(𝛾) is 

discontinuous
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Phase Transition

• One can prove the following results:
1. There is no zeroth-order phase transition (PT) for finite 𝐷

2. 𝐷 = 0 has no PT

3. 𝐷 = 1 has a second-order PT

4. 𝐷 ≥ 2 has a first-order PT
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Implications
• Need to escape local minimum for deeper models

Deeper models are stuck in the 
trivial state for small signal
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Implications
• Critical dynamics takes a rather universal characteristic

• Training proceeds with gradient descent plus additive Gaussian noise

Deeper models feature 
a wide plateau at 
initialization

𝐷 = 1: no barrier 
to overcome

𝐷 > 0: barriers to 
overcome

Learning of 
deeper models 
are divided into 
regimes

41



Implications
• Sparsity is common in deep regularized models

• Example of a two-layer model trained on MNIST
• 𝜅: weight decay

42



Last Comment

• Is landscape the only cause of collapse?
• No.

43



Last Comment

• Besides the landscape causes of collapse, SGD dynamics can also lead 
to collapse (implicit regularization).
• Complete collapse can happen when the learning rate is too large and when 

the batch size is too small
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A Unifying Picture
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Second-order 
phase transitions

First-order phase 
transitions

“Dynamical” phase 
transitions

Three mechanisms 
for Collapse

Stability of the origin 
matters
• Posterior collapse
• Dimensional collapse
• 1-hidden layer 

models

Difficult to understand
• Occur in deeper 

models
• Factors are global
• Need to overcome 

loss barriers

Induced by the implicit 
bias of SGD
• Large learning rate
• Small batch size
• Should occur in any 

model (?)



Messages
• Collapse is a ubiquitous phenomenon in deep learning and there 

might exist universal explanation for it

• Landscape analysis around the origin can explain the landscape 
causes of the collapse phenomenon
• The origin is a very special point in deep learning!

• Phase transition behaviors are ubiquitous in deep learning in the form 
of collapses

• (Alternatively) Collapses can be understood in the form of phase 
transitions
• Norm of the model / singular values of the weight matrices are good 

candidates of order parameters

• There are also non-landscape causes of collapse
• Implicit bias!
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An Important Question

• Can collapse explain the success of deep learning?
• Collapse encourages low-rankness and sparsity, which are good candidates for 

explaining generalization

• Can we use collapse to design better learning algorithms?

• Do biological brains “collapse”?
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Partially based on…

• “Exact Solutions of a Deep Linear Network.” NeurIPS 2022

• “Posterior Collapse of a Linear Latent Variable Model.” NeurIPS 2022

• “Exact Phase Transitions in Deep Learning.” arxiv 2205.12510

• “What shapes the loss landscape of self-supervised learning?” arxiv 2210.00638

• “SGD with a Constant Large Learning Rate Can Converge to Local Maxima.” ICLR 2022

Collaborators: Masahito Ueda, Hidenori Tanaka, Ekdeep Singh Lubana, Botao Li, Zihao wang, James 
B. Simon, Xiangming Meng
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End of Presentation
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